Método de Montecarlo:
El método Montecarlo es un método numérico que permite resolver problemas físicos y matemáticos mediante la simulación de variables aleatorias. Lo vamos a considerar aquí desde un punto de vista didáctico para resolver un problema del que conocemos tanto su solución analítica como numérica. El método Montecarlo fue bautizado así por su clara analogía con los juegos de ruleta de los casinos, el más célebre de los cuales es el de Montecarlo, casino cuya construcción fue propuesta en 1856 por el príncipe Carlos III de Mónaco, siendo inaugurado en 1861.
La importancia actual del método Montecarlo se basa en la existencia de problemas que tienen difícil solución por métodos exclusivamente analíticos o numéricos, pero que dependen de factores aleatorios o se pueden asociar a un modelo probabilística artificial (resolución de integrales de muchas variables, minimización de funciones, etc.). Gracias al avance en diseño de los ordenadores, cálculos Montecarlo que en otro tiempo hubieran sido inconcebibles, hoy en día se presentan como asequibles para la resolución de ciertos problemas. En estos métodos el error ~ 1/√N, donde N es el número de pruebas y, por tanto, ganar una cifra decimal en la precisión implica aumentar N en 100 veces. La base es la generación de números aleatorios de los que nos serviremos para calcular probabilidades. Conseguir un buen generador de estos números así como un conjunto estadístico adecuado sobre el que trabajar son las primeras dificultades con la nos vamos a encontrar a la hora de utilizar este método. En el caso que presentamos hemos hecho uso de la función random() incluida en la clase Math que la máquina virtual Java trae por defecto como generador. Las pruebas realizadas, algunas de las cuales se propondrán como ejercicio, verifican su calidad a la hora de calcular números aleatorios sin tendencia aparente a la repetición ordenada.
Conclusiones:
El método de MonteCarlo es muy útil e importante para cálculos con variables o factores aleatorios, este modelo se puede asociar como un modelo de probabilística artificial. Por ejemplo para los casinos es muy útil para hacer que la "casa" nunca pierda, y esto es porque ellos cálculan y predicen y dicen por este método cuando habrá un cierto ganador.
Fuente de Información:
https://www.uam.es/personal_pdi/ciencias/carlosp/html/pid/montecarlo.html
No hay comentarios.:
Publicar un comentario